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Abstract

This paper presents a new method for minimizing a positive definite quadratic

function subject to linear inequality constraints. It is based on a continuous defor-

mation of the quadratic starting from one giving rise to an almost trivial problem

and ending with the desired quadratic.

The method is particularly suitable for problems involving large numbers of

inequality constraints, since the size of the variable space is independent of the

number of inequalities.

The method is readily extended to linear programming by embedding the linear

objective function in a second degree polynomial with positive definite quadratic

component, solving the resulting problem by the above method, then driving the

quadratic component to zero; that is, deforming the second degree programming

problem back to the original linear one.
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A Deformation Method for the Minimization
of a Quadratic Function Subject
to Unear Inequality Constraints

1. INTRODUCTION

In recent years there has been considerable research devoted to the problem of
minimizing a positive definite quadratic function of n variables over a polyhedral

region in Euclidean n space and a variety of methods have appeared in the litera-

ture. This paper presents a method closely related to the capacity methods of

Houthakker I and Markowitz. 2 My reason for presenting another method, and per-
haps adding to the confusion, is that their methods are tailored to a particular ap-

plication and are less well suited to other applications. Furthermore, the present
method is readily extended to linear programming, whereas the capacity methods

do not seem capable of this extension.
This method, as well as those of Houthakker and Markowitz, involves manipu-

lation of matrices whose sizes are independent of the number of linear inequalities

defining the polyhedral region, in contradistinction to methods based on the simplex

algorithm, such as those of Beale' and Frank and Wolfe, 4 in which the sizes of the

matrices increase linearly with the number of inequalities. This is one of the princi-
pal reasons for considering algorithms alternative to ones based on the simplex

algorithm.
Denote the polyhedral region by U, defined by the inequalities

_x> b ,  i i. p, (1.1)

(Received for publication, 15 February 1963)
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wherex' (x I .... xn) i s avector variable, anda ' =(aiy ... ain). bi , I 1 p

are a set of vector and scalar constants. respectIvely. The xi's are not necessarily

non-negative; however, if they are, these conditions are presumed Included in

(1. 1). Since any equality can be written as two inequalities, then (1. 1) also

includes any equality conditions. The quadratic is given by:

Qi~x) x~ z rkx' xRx (1. 2)

j-1 h=1

where R - (rjk} is a positive definite n xn matrix. Since any minimization problem

of the type under consideration is specified once the inequalities (1. 1) and the

quadratic Q(x) are given, a problem will be defined to be a pair (Q. U) where Q is a

quadratic of the form Eq. (1. 2), and U is a polyhedral region. A solution to a

problem will be a point in U minimizing the quadratic.

If the region U contains the origin, then this point is the solution; otherwise it

is known that the solution is on the boundary of U and elementary calculus methods

cannot be used to determine this point.

The general method used here, and by Houthakker and Markowitz, is to start
with some point known to be in U and to formulate a problem whose solution is this

particular point, then to continuously deform the problem into the original one while

keeping track of the solution. Houthakker and Markowitz do this by means of an

additional inequality a 1 I >b where b is a parameter with the range -

to -. This inequality bisects U into two parts: U 1 = U {x : ap+1 x> bp+l} and

U 2 f U - U 1 (one of these may be empty). For some value of b,+ I , U1 will consist

of a single point (or, in exceptional cases, a hyperplane). The minimum of Q(x)

over this particular U1 is easily found. As bP+1 is then decreased (or increased),

U1 grows and the solution in U1 moves continuously along the surface of U to the

solution over U. Since U is a polyhedron, each point on its surface can be charac-

terized as the intersection of a set of hyperplanes ai Ix = bi , I c I, where I is a

subset of the integers 1 .... p. Thus, the solution can be kept track of by a set

function 1(b p+l), which is a function of the parameter bp+ I, since the solution is a

function of b The accompanying algorithm is principally concerned with rules

for determining when to add or delete indices from I(bp+I).

Markowitz tsed this method in connection with what he called the portfolio

problem, in which the equation ap+ bp+1 has a special interpretation, and the

solutions for all values of bp+I are of interest. Therefore, the method seems quite

well suited to the application.
In the method used here, one begins with a, subproblem of the original problem,

which is easy to solve, and obtained by setting x2 n... x 0 and replacing Q(x)

x~~~ ~ ~ 0 n elaigQ
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2
by the rank one quadratic xI rll. Then one permits 32 to be non-zero and deforms

xl 2rl into the rank two quadratic x, r U + x2 r 22 + 2xIx2r 1 2 in such a way that the
solution moves continuously over U. The solution then becomes a function of t, and

is determined explicitly. Thus its value, if known at the beginning of the deformation,

will be known at the end. This is continued: the variables xk are introduced one at
a time; with each, the present quadratic z k-1 xirijxj is deformed into the quad-

ratic l j., irijxj, one rank higher, until one returns to the original quadratic

Q(x). The deformation of the quadratic is achieved by replacing the elements rjk of

R by expressions trjk and t + rik where t is a parameter taking values in an ap-

propriate interval.

Along the way to the final solution the solutions to the subproblems are obtained.

These solutions are needed in many applications. In particular, n, the number

of variables, may itself be a variable and the minimum value of the quadratic a

function of n. to be determined. For such problems our method seems the more

natural one.

Tie addition of a linear term to the quadratic involves a minor modification of

the algorithm (in principle, a suitable linear transformation will eliminate the linear

part), and since a second degree polynomial can be continuously deformed into its

linear component, any linear programming problem can be solved by embedding it

in a second degree polynomial programming problem, solving the latter, and then

deforming the second degree polynomial into its linear component.

The application which led to this method is the problem of linear, minimax pre-

diction of deterministic processes using a quadratic loss function. In this application

x1,... , xn are the coefficients of the linear predictor, while R is the covariance

matrix of the observations. The observations have the form y,(G) + z, j = 1 .... n,

where y (O) is a discrete deterministic process indexed by a parameter 0, and zj is

a random variable.
Subject to certain restrictions, it can be shown that the problem of determining

the Xi's reduces to a quadratic programv-ing problem with, in general, an infinite

number of linear inequality restrictions. In applications one can sometimes obtain

a good approximation to the problem with a finite, though large, number of inequali-

ties - hence the need for a quadratic programming algorithm which can handle large

numbers of inequalities.

In this application it is generally desirable to obtain the predictors based on all

sample sizes up to n, or to let n be a variable of the algorithm and stop according

to some rule involving the expected loss.

The theory on which this algorithm is based is given in the next two sections.

In Section 2 some definitions and preliminary facts stated as propositions are given.

The algorithm is more directly based on three propositions given in Section 3. They
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are called propositions rather than theorems for lack of a more suitable word to

describe some highly specialized results in the theory of linear spaces and convex

functions.
The basic algorithm is described in Section 4, and an example given in Section

5; Sections 6, 7. and 8 present the treatment of three possible types of degeneracies
which may occur in the basic algorithm; Section 9 treats computing procedures,

while in Section 10 the methodis extended to linear programming.

2. DEFINITIONS AND PRELIMINARIES

A problem, as previously stated in Section 1. is a pair (Q, U), where Q is a quad-
ratic form and U is a polyhedral region in the space of the variables of the quadratic
form. A solution to the problem is a point in U minimizing Q. It will be assumed that

U is nonempty and does not contain the origin. Let I. with or without subscripts, be
any subset of the integers I ... ,p and let hi be the hyperplane defined by the equalities
a i x = bi , i c 1. Let t be a real parameter and R(t) {rj(t)) be an nX n matrix

such that rij(t) is either constant or linear in t, but not all rij(t) are constant, and
such that R(t) is positive definite for all t in its domain. This domain will be either

a finite or infinite interval with the lower bound of this interval, a, always finite and
the upper, 0, finite or infinite. If the interval is finite, then o < t < P; while if
infinite, then a < t < /. This interval is also denoted by T. For any polyhedral
region U of x space, let x(t, U) denote the solution to the problem (Q(x, t), U)
where Q(x, t) = x'R(t)x. Thus, x(t, hl) is a solution to the problem (Q(x,t), hl) where

h is specified by a i 'x = bi, i e 1.
Vectors will always be column vectors written in boldface (indicated by under-

lining). For any sets U, V, U C V will denote U properly contained in V; UC V
will denote U C V or U V. To reduce the amount of notation, arguments of functions
will be omitted where the functional dependence is clear from the text.

The polyhedron U is convex and so is any hyperplane hi. Moreover, Q(xt) is

a strictly convex function of x, since Q(x,t) is positive definite. Therefore, x(t, U)
exists and is unique for t c T and similarly for x(t, h), if hI is nonempty.

For any t e T let I(t) be the set of all integers 1, 1 < i < p, such that ! 'x(t. U)
b.. Then,

1

x(t, h(t)) x(t, U), t e T, (2.1)

Proof: x(t. U) is in hi(t), and hI(t) is contained in any supporting hyperplane (that is,
any hyper-lane of the form a'x - b such that a'x I b for all x c U, with equality hold-
ing for some x e U) to U at thi point x(t, U). -Wow, since x(, U) minimizes Q(x, t) over
U, it follows that the ellipsoid consisting of all x such that Q(x,t) = Q(x(t, U),) does
not intersect U except at the point x(t, U). Sinceboth U and ts ellipsoid are convex,
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so that an explicit formula for x(t, U) is given by the formula for x(t, hl(t)) . Note
that I(t) is maximal with respect to its given property.

The formula for x(t, hi (t)) is obtained by means of the Lagrange multiplier

method; that is, the unrestricted minimum of Q(x. t) - 2 Zk ?k(!k "x k bk), k , I(t),

with respect to x and % is-found. After differentiating, one obtains necessary and

sufficient conditions for a minimum:

R()x - AIX 0 (2; 2)

Ax -b, (2.3)

where A is the matrix with rows k e 1(t). By assuming that A has full row rank;

that is, the rows of A are linearly independent, the solution is:

x- x(t, h (t)) -R ) A' (2.4)

( -xt. hl ()) a (AR (t) A') b. (2.5)

Direct use of this formula for computation would be very inefficient; a better

method of computing x and - is given in Section 9. However, it is satisfactory for

expository purposes. If A is nonsingular, then (2. 3) has a unique solution

independent of R(t). In this case x will not depend ua t, while h continues to do so
(except if b 1 0, which is excluded by the hypothesis that U does not contain the

origin).

For fixed A and b the coordinates of x and A are rational in t. In this case a 0

,value for the J'th coordinate of . has the interpretation that for that particular value
of t, the j'th condition, a| 'x a bj, is redundant. More precisely,

Let fx) be some function whose partial derivatives exist for all x
and let r V (s.... ,n) be a stationary point of f(x), subject to the k + r

consistent and linearly independent linear restrictions, N 11 -bi, i 1 1 (2. 6)
....k+r. A necessary and sufficient condition that _ is also a stationary
point of f(x) subject to just the first k linear restrictions is that Tk+l I
... k+r ' where*, .... ^k+r' the Lagrange multipliers, are a

thsolution to the equUtions

there is a separating hyperplane, H, (a hyperplane which is supporting hyperplane to
both U and the ellipsoid), cottaining the point x(t, U) and hence, containinie ., t) oe
the minimum of Q(x, t) over H to at x~t, H4), the-latter point also minimizs Q , 01 over
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f (_) + A - 0, j i . . (2.6)

9i- ial -
For any I, the coordinates of x(t, hi) are rational in t, hence x(t, hi) is continuous.

Furthermore, x(t ,hI(t)) is also continuous in t. This in true because Q(x,t) is

continuous in x and t, hence minxcUQ(x, t) a Q(x(t, hi(t)) , t) is continuous in t. Since

x(t. h(t)) is unique, it is. therefore, continuous.

The following section establishes the properties of I(t) on which the algorithm

is based: as t traverses the interval T in either direction, I(t) makes only a finite

number of changes in value and each change involves one or more (generally one)

additions or deletions to the set 1(t). At the points t where these additions or

deletions occur, certain conditions hold which enable us to determine where these

points are and which indices to add or delete from l(t).

3. THEORY OF THE AWORTHM

For each I1(l.. p) and jJ EI there are, at most, a finite number of points of

intersection of xt, hl) and (x: a I x - b for t e T; hence, the total number of points
-- j - j*

of intersection for all pairs aJ), j J I (1. p) is also finite. Let S* be the set

of all these points of intersection. Then at any point t* where 1(t) changes value,

necessarily x* u xft*,hl(t*)) cS. Now it will be shown that to each x* e S* there

correspond, at most, two points t of change of I(t), implying that I(t) changes value

at no more than a finite number of points in T. If there are more than two points,

then there exdsts t< t < t3 such that x* x(t. h(t 1 )) x(t 3 ohl(t 3 )) ,'x~2.hlt 2 )) *

* Proof: The sufficiency is immediate. For the necessity, if 2 is a stationary point
of fx) subject just to b i 'xubj, i 1... . , k, then there exist .... pk satisfying

I@+ 0,. '_ a -o I_... n.

Subtracting the latter from the equation in (2. 6) for j.. ... n, one obtains:

I=I lak+l

Since the N 's are linearly independent, i pi. i I.. . d1 i Xi 0. 1 k l,...n.
Q. .D.



i 2. Since Q(x,t) is strictly convex in x for fixed t, Q(x* ,t 1 )< Q(x 2 t1 ), Q(x* ,t 3 )<
Qx 2 ,t$), n-Q(!.2 t2)<Q(* ,t2 ). On the other hand, as the elements of R(t) are
linear in t, Q(xt) is linear in t for fixed x. However, the last three inequalities

-cannot be true simultaneously, as the reader may readily verify with a sketch.
Geometrically, this implies that x(t , hi(t)) cannot describe a loop.

Call any point t, where I(t) changes value, a transition point and the change
itself a transition. For definiteness take t as decreasing in T- [s,0]. At a transi-
tion point t there are three possible types of transitions: (1) either one or more
subscripts are added to (t); (2) one or more are subtracted; (3) both subtraction
snd addition take place.

If Type (1). then l(ti+)C I(t i ) = I(ti-); the alternative, I(ti+) = I(ti)C I(ti-) can-
not occur because x(t1., hI(ti)) hI(t i -) and, by definition, I(t) is always maximal. For

a similar reason in Type (2) 1 (ti+)= I(t)DI(ti-) and, in Type (3), 1(ti+)C I(t i ) D
I(ti-). In the latter case, there are two transitions at a single transition point.

Let I.. Im be the sequence of values which I(t) takes, andt ,tm the

sequence of transition points as t decreases in the interval P > t > a. In order to
have the izeqe for the transitions coincide with the index for the transition points take
ti -ti 1 if Type (3) above occurs at t i . Notingthat at tj the transition ll - I i takes

place, we have

(t) -I i for ti 
> t > ti+1 if t i > t i + 11

I(ti) - I.1 if indices are added to I(t) at t, (Types (1) or (3)) . (3.1)

= Ii  if indices are subtracted from I(t) at tj (Type (2)).

It is convenient to extend the above results to the endpoints a and P. If t 1 =
P < ,% then define I(tl) = I. In general, I(t 1) - I(t 1 -) 1 I1, so that I0 may equal Ii .

Similarly, define I(a) = I(t m) I IM+ 1, where Im may equal Is+ 1I If P x - and
limt..x(t, hI) a x(-,h1I ) exists,then I(tl) will also exist. It is assumed below that
x(, hl ) and 1(t1) exist where they are used. In the following section their existence
is proved for the particular algorithm developed.

For use in the sequel note a few conclusions which follow from these definitions
will now be given. There may not be more than two adjacent equal transition points
and, on the other hand, no adjacent sets II, i+1 which are equal. Slightly less
elementary is

ti+ I > ti+2 if lI I i+1

(3.2)
~t i >ti+ I if licli+l.

I
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Proof. If Il ) li+l, the I(ti+1) lI,+1 by (3. 1). Ift1 ti i+ 1
then the top conclusion follows immediately. On the other hand, if
ti >ti+ ti2 then Ii a l~ti+,+) l~ti+I) a 1i+, which contradicts

S1+1 1+2' th 1I + +
the hypothesis. The second statement of (3.2) is proved similarly.

A third conclusion from these definitions is

ti, hl(t hi rN hi, (3.3)

since ti is the point of transition of I- to Ii and x(t, hi(t)), being continuous, must
satisfy aj 'x(t 1 ,h(ti)) • bj, j e Ii-J Ii. Hence, x(tth(ti)) c h(li _U 1 i) =
hi- 0 hi"

These definitions and results are given in terms of decreasing t; for t increas-
ing, obviously t, < ti+, which affects (3.2) and a number of other statements.

In addition t+ and t- must be interchanged wherever they appear. Throughout this
section t will continue to be taken as decreasing.

As t decreases, x (t" h(t)) describes a continuous path on the surface of U. If
li Dli+ I at the transition point ti+I, then, geometrically, x(t, hl(t)) leaves the
hyperplane hl which may be regarded as an edge of U and moves in the higher dimen-
sional hyperplane hli+ I which may be regarded as a face relative to hi1. By (2. 6)
it follows that at the point ti+ I, where the transition Ii-i+, occurs, the LAgrange
multipliers X (ti.l ' h) corresponding to the conditions a 'x = bj, c i-I+ I, become
zero. This is a necessary condition satisfied by the triple ti+I, Ii, and I1+1'

On the other hand, if Ii C li+1 at ti+ I, then aj 'x(ti+, hii) - bj a 0 for j e i+ I
- I0 which i a necessary condition satisfied by the triple t,+,, I, and li+, in this case.

Thus a necessary condition for a transition of either type at the point t t is
either

(t, hli da 0 for some j , 1 (3.4)

or

aj'x(t,.hii) - b j -0 forsome i  • (3.5)

Neither of these conditions .done is sufficient for its respective type of transition.
In particular, there may exdst subsets J', J" such that J' Cli C J", and points t,
t" <ti such that the triple t', I, and J' satisfies (3.4) for allJ C cI-J, while the
triple t, Ii, and J" satisfies (3. 5) for all j qJi - Ii" The transition point
ti+ I, If it is one of the two points t', t", by definition, must be the larger of the two

___ i
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(the smaller if t is increasing). Hence, any sufficient conditions must take account

of both (3. 4) and (3. 5) (this explains the apparent circularity of Props. 1 and

2, below). Furthermore, the occurrence of (3. 4) or (3. 5) is not sufficient for

a transition (of either type) since the multipliers can vanish at a non-transition point.

The following two propositions give sufficient conditions fo~r the two types of

trasiion, iC I+1and I ) D i+1repcively. The conditions in the first are

also necessary.

Provosltion 1. Let J be asubset of the integers 1,. .p such that J )1 I - 1.

.. m- 1, and. assume that t is a decreasing parameter. Necessary and sufftcient

conditions that a number to and the subset J are t1.,. and I +, respectively, are

(I) t >to > 0

(iii) J is the maidmal subset satisfying (ii) at t'

(iv) to is the largest number satisfying (0) - (iii) for some J ')It.

where J Iin asubset of (1, .. . ,p)

(v The conditions (1), (iii), and (iv) of Prop. 2 are not satisfied
for a number t" > to.

Proof: We first prove the necessity of these conditions, ,1. e..,

that t'ut 1I and J - I 4  satisfy MI - (v) if I + DI V
F- definition, t > t1 . if t x ut1  then, again by definition, t1.

t 2and, by (3. 1), it follows that it - 1(t1) * (t t 1 ), while ,1+I
ft ).But xf t1 , hI(t 4 )J je hI14 1I() hlC hI,. 1 by (3. 3); there -

fore, 1t 14M) 211+1 :)I * (t14 1), implying that I(t1 ,) x a+ and con-

tradicting (3..2). Thus tt 0 ti,.1, proving (i).
By definition of the transitions and transition points (i), (iii), and (iv)

are true. For Mv, if there eiats t" and J1. t" > ti and J7 'C I, satisfying

M1, (i), ad (tv) of Prop. 2, then Q~x(t, hJ '),t0 < Q~x(t, b11),t0 in - " >

Of Prop. 2, equality, cannot hold identically throughout the interval.

But inequality contradicts the definition of. I j; hence, it follows that

Mv is necessary.
Now, from (iii) and (iv) of the present proposition it follows that

*t 141 and 1141 are the unique pair satisfying (U) - (v); therefore, .the

conditions are also sufficient. Q. E. D.

Proposition 2. Assume that the restrictions aj x a b , J c i are linearly independ-

elt, and t is decreasing. .. If there ext t' and J, 11 i, 0 < i < rn-i1, such

that 41) - (vi)below are satisfied, then t' *ti 1 and J a
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(1) t I  t' >a
(ii) X (t',hli )  0 for j e Ii - J, and there exists at least one j e Ii - J such

t~At X I(t, hi ) 0 0 in t

(iiI) ! j Ix(t, hJ) - bj j 0 for j cl i - J
(iv) x(t. hJ) e U for t' >' t > t' - L, , for some e' > 0

Mv J is the unique smallest subset of Ii, satisfying Mi - (iv)

N t' is the largest number satisfying (i) - (iv) for some proper subset of
! xi

(vii) conditions (i), (ii), and (iii) of Prop. I are not satisfied for some t"
> t' and X D I t .

Proof: We first prove that t' > ti+1 , then the converse. Now, either

)I+I  l or Ii+1 C IV If the former, andt i+l> t', then i+ andti+1

satisfy (I), (ii), and (Ill) of Prop. 1, violating (vi) of this proposition;

hence, t' > ti+ I if i+1 ') Ii .

If, on the other hand, Ii+ I C Ii , then it will be shown that t i+I

and lI + satisfy (I) - (v); hence, by (vi), it will follow that t' > ti+l .

By definition, (I) and (iii) are true while, by (3. 2), t+ I >t1+2 ,

so that ti+, and i+1 satisfy (iv), again by definition. By (2. 6),

XI ti+I, hl i ) a 0 for j t Ii - Ii+1; moreover, the set of multipliers

hi, j f Ii - I cannot all be identically 0 with respect to t for, if

they are then, in an interval tit+ I > t > t i+1 -, > t+ 2 , c > 0 (which

exists by (3. 2)) I rather than 1+ 1 is maximal, contradicting the

assumption that t i+1 is a transition point. Thus, ti+ I and Ii+ 1 satisfy

(it). Finally, if (v) is not true, then the strict convexity of Q(x, t) with

respect to x' implies that x(t, hMi+ I ) does not minimize Q(x,t) in the

interval t + 1 > t > t +1 - e'. Thus, t14 . and I satisfy (ii).

Therefore, under either assumption I i+1 C Ii or Ii C Ili+.1 t' > ti+I

and, since these assumptions are mutually exhaustive, it follows that

t' > ti+I without either assumption. If now, t' > t i+ 1 then, since

_xt, hli) is the unique minimum of Q(xt) over U in the interval t' >

t > t 1 and, since J Cl implies Q(x(t, hJ),t) < Q(x(t, hi),t) in

this interval, then it follows from (iv) that x(t.hJ) - x(t, hi) in a

subinterval of this interval. But, since Mdt, hi i ) is rational in t, it

follows by Eq. (2. 6) that XLI(thl) 0 for j c Ii - J, contradicting (ii).

Therefore, t' < t i+I and, together with the previous result, it follows

that t' 0 tI+* ,

It remains to show that J -i+I. First we prove that Ii+IC Ii .

If ti+I ,t' U t i , then condition (I) of Prop. 1 is violated; hence, l.

I , The only alternative is Ii+ I. On the other hand, if

t, > ti+I then (i) of Prop. 1 is satisfied. Now we show that if li+l:)Ili

1 14.114.1 1



then (ii) and (iii) are also satisfied, thus violating (vii) of the present

proposition. Thus the conclusion again will be 1i+l Ii. By (3. 3)

x (ti+1 M,h(t i+)) e hli n hli+I. Therefore, since I(t i+) is maximal,

I(ti+I) - Ii V lI+I. But, by (3. l),I(ti+ ) equals either Ii or Ii+11

hence, I(ti+I) . I i Ii+1. Therefore, if Ii+I D Ii, then I(ti+ I i+ ,

and ti+ I and 1i+1 satisfy (ii) and (iii) of Prop. 1.

Thus It+I C Ii. Now if I+I DJ. then (iv) is violated while, since

(i) - (iv) are necessary for 1i+, . if I i+ J, then (v) is violated. There-

fore, I  3. Q.E.D.

The conditions of Prop. 2are only sufficient because it is possible for ti+I and
I +1 to satisfy all the conditions except (v). This is illustrated in Figure 1, for

which the following assumptions are made: hli+ I coincides with an edge of U to the

right of the vertex x(t hi); x(ti+Ihii) = x h x Ith+) moves along hl+ I
7 +1'h 1hxti1 - x(ti+ 1 .hj) x(t,4 ~ ~

in the direction of the arrow as t decreases; x(t, hJ) moves along the dashed line

in the direction of the arrow as t decreases, but the dashed line is outside U. Then

Ii+1 will satisfy all the conditions except (v) of Prop. 2 while J will satisfy (v), but

not (iv), This contingency will be called a degeneracy of Type 3, one of three possible

types which are treated in a similar manner; namely, by detouring around the region in

x space where the difficulty occurs, in this case around the point x(ti+,hi). This

degeneracy is treated in Section 8.

w hi

Figure 1.

Proposition 2 excludes the case where the linear restrictions corresponding to

Ii are linearly dependent. It is very desirable, for computational reasons, that the

restrictions be linearly independent. The contingency which arises when, for some

transition point ti, the rows a C, j I(ti), are linearly dependent is called a degener-

* acy of Type 2 which is treated in Section 7.

If t, - ti in Prop. 2 then there results a double transition at the point ti. This

may occur in two ways, although they are both generally rare events. Figures 2 and
3 illustrate these double transitions. The straight lines and surfaces cut off by these

lines indicate hyperplanes (the lines being the intersections of the surfaces), while

the trajectory of x(t, U) is indicated by the straight or curved lines with arrows.

Ii
.. .....
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In Figure 2 x is tangent to a hyperplarie at the point t. This tangency is equivalent
F

to aj 'x(t. hli) - b 0 having a double root at t i =t ifor j Ei+ I -Ii. InFigure3

x undergoes an abrupt change of direction at ti , touching the hyperplane hiy+ I for

just the single parameter point t i = ti+1 . This event is equivalent to aj 'x(ti+1 , hl) -
b =0, j cIi+1 -I i , and Ak ti+IIhli) = 0 for one or more k e IiI neither of the

two events illustrated by the figures occurs, it can be assumed that t i > i+ I .

Condition (iii) is added to Prop. 2 only because the I i have bcen defined as maxi-

mal. From the proof of (2.6) it follows that if one first finds J ignoring (iii),

then the addition of any subscripts to J in order to satisfy (iii) will not affect the A''s

nor, of course, x.

hl h

hILL

i(t,U)

Figure 2 Figure 3

4. THE GENERAL FORM OF THE ALGORITHM

Recall that a problem was defined to be a pair (Q(x), U) , where Q(x) is a quad-

ratic form in x, and U is a polyhedral region in . space. The algorithm consists of

n stages; in the k'th stage, 1 < k < n, the original problem is solved subject to the

additional restrictions Xk+ x 0 (since these can be written as 2(n - k)

inequalities, a new polyhedral region is obtained, hence a new problem). The stages

are linked together by having the solution to each stage as the initial solution to the

succeeding stage. To describe this more precisely, it is necessary to first introduce

some terminology.
If (Q (x,t), U), a < t < P,is a family of problems with parameter t. t taken as

decreasing, then the initial and terminal solutions relative to this family of problems

are defined to be x(p, U) and x(a, U). Call I(P) 1 10 the initial restriction set, and

I(a) a Im the terminal restriction set relative to the family. If t is taken as increas-

ing from a to P, then the designations 'initial' and 'terminal, are reversed. For

brevity the designation 'problem' for 'family of problems' will be used.

Let IRk(t) equal

il



i 13

r . . . r 1 ko1  0

r 1 r 0 l (4.1)
r k - 1, I . . r k -1o k .-I

Lo  .. . . . . . . .o rk t

Md 2ROk) equal

r,, .. .... rl,k. trlk

rk-~ L. rk-lk-I trj-1 I . 411

Ltrkl ..... . tk kI rk

Note that in (4. 1) only the lower right element depends on t, while in (4. 1. 1)
t multiplies every element in the right column and lower row except rkk.

The k-l'st stage is the problem of minimizing X2 lkl ()xwhere x' (x...,

'k1)o subject to

a ijxj _>bi, i. X 1 .... 'p

Jul (4.2)

xk -" - -so.
xi... *X n  0

Assuming this problem has been solved, the elements of interest for the k'th stage,
k a 2,... n, are the terminal restriction set I(1) and the terminal solution x( 1,1iM(U))
which lies on the hyperplane hl(l). The k'th stage is subdived into two subproblems.
The matrix of the quadratic of the first subproblem of the k'th stage is iRk(t) with
t going from * to 0, and the polyhedral region is defined by

a1 xlJ>bi. ju1,..p

Jul (4.3)

Xk+ I ... " 0

It is shown below that the terminal solution and restriction set of the k-1Vst stage

****~**-*-~-
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equal, respectively, the initial solution and initial restriction set of the first sub-
problem of the k'th stage. It follows that the solution i continuous between taes.

At the conclusion of the first subproblem the term xk2 rkk has been added to the

quadratic. The second subproblem adds the cross product terms by taking 2 Rk(t) as

the matrix of the quadratic of this subproblem, and allowing t to go from 0 to 1,

unlike the first subproblem where t went from - to 0. The conditions in (4. 3)

are maintained for both subproblems of the k'th stage. It is shown below that term-

inal and initial solutions and restriction sets of adjacent subproblems within a given

stage are identical.

Our theory makes use of the strict convexity of the quadratic Q(x, t), with respect

to x, for all t in the range of interest, which is equivalent to the positive definiteness

of R(t). By hypothesis, 2 Rk(l) and IRk(t), t > 0, are positive definite for k - I...,

n, while from 2 Rk(t) (1-t)Rk(0) + t 2 Rk(1), it follows that Rk(t) is positive definite

for 0 <t < 1, k - 2,. .. ,n.

The identity of solution and restriction sets between adjacent subproblems and

stages is important because the propositions of Section 3 only provide the basis of

rules for adding or deleting elements to the set I(t); hence, for each subproblem and

stage, it is essential that we have an initial restriction set. In the first stage an

initial restriction set is unnecessary because the problem is transparent; a solu-

tion can be found almost at sight, provided a solution exists. Non-existence of a

solution is one of the three types of degeneracy and is treated in Section 6.

In each of the subproblems into which the k'th stage is divided we make use of

Props. 1 and 2 to traverse the associated range of t in a finite series of jumps from

one transition point to the next.+ The method can be explained most clearly by an

example given in the following section..

Non-degeneracy is assumed in this example. Recall that the three possible types

of degeneracy are: (1) failure of a solution to exist in the first stage, which is equiva-

lent to the non-existence of any x satisfying (4. 3) for k a 1; (2) the matrix A in

(2.2) - (2. 5) does not have full rank, so that x and Xt as defined by (2. 4)

and (2. 5) fail to exist; (3) a transition of the type I,+, .C Ii which fails to satisfy condi-

tion (iv) or (v) of Prop. 2, as explained in Section 3.

The subdivision of the over-all problem into stages, and each stage into sub-

problems, creates a chain of subproblems, ordered by the sequence in which they

are solved. This section is concluded with a proof of the identity of terminal and

initial solution and restriction sets of adjacent subproblems in this chain.

Proposition 3. Assuming non-degeneracy, the terminal solution and terminal restric-

tion set of any subproblem is identical, respectively, to the initial solution and initial

restriction set of the following subproblem.

Proof The proof for the second subproblem of the k-l'st stage and

the first subproblem of the k'th stage, k * 2,... ,n, will be given first



~15 -

Throughout this paper it is assumed that 2Rn(l) is positive definite,
hence so is IRk(t) for 0 < t < -, k a 2, .... , n. Therefore, because A,
in (2. 2) and (2. 3), is of full rank by our non-degeneracy assumption,

it follows that, for all t, 0 < t < -, there exists a solution x(t) = (xl(t)
xk(t)) , given by (2. 4), to the problem determined by x' iRk(t)x

and the inequalities (4. 3). Then, for any fixed vector y' 1(y,

**""' Yk- V 0) satisfying Eq. (4.3), this solution must satisfyx'(t)IRk(tx(t)
?' Y k(t lconstant< o" Hence, the term xk t) (rkk + t) in

Sx' (t) iRk(t)xt) must remain bounded as t - ., implying I xk(t)I - 0
as t - .. Letting x(.-) be any limiting point of x(t) as t (at least

one limiting point exists since x(t) lies in some bounded subset) it

follows that x(.) satisfies Eq. (4. 2) and minimizes

,l I xrjj,x, . (4,4)

3"l j'.l

Any solution to the problem defined by (4. 2) and (4. 4) is a terminal

solution for the k-l'st stage. Furthermore, since (4.4) is strictly

convex with respect to (x . . ). x(.) is unique.
It follows, immediately, that I(.) - I0 exists and equals the terminal

restriction set of the k-l'st stage.

The corresponding result for the pair of subproblems within a

stage follows immediately from the fact that iRk(0) - 2Rk(0). Q. E. D.

5. EXAMPLE 1: The algorithm when no degeneracies are present

The purpose of this example, and the other examples below, is to exhibit how

the algorithm proceeds; therefore, to avoid distractions from the main ideas
no special computational techniques are used for the solution of the equations which
arise. In Section 9 some computational techniques are given which, it is believed,
make even large scale problems readily accessible to present day automatic computers.

For the first example

Q(x) = 3X 2 + 2x 2 2 + 2xlX2  (5. 1)

is the quadratic,and U in the region defined by -j' > bj . , .... 6. where ,
bj are given in the following table:

i ,



1 12 4
2 1 1 3
3 3 1 6
4 1 -1 -2

5 -1 -2 -10
6 -1 4 -5

The region U ts illustrated in Figure 4.

For the first stage let Q(x) r 3x 1 2and set x 0.

Fiur 4.

4si enfo iue4 h eto owihteslto srsrce

t1

Asth ee frt Fubrbem of the second stg is to miiichte sltoorsrce

consit of 3xl pont (xi, ) (5h4<x<5 Tu h ouin sx.4 .2
1

Thisis he ermnal oluionto he irststae-,as t les o th lie a bI
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over U, with t going from - to 0 and with (I) I , , the initial restriction set. The

Lagrangian is, therefore,

3x1 2  2 A 1 Nx1 + 2x 2 )

from which we obtain the conditions

3x1  0

(2+t0 x 2 "X 1 =0

holding at the minimum. Together with the restriction, x 1 + 2x 2  4, this system

of equations has the solution

4 t +8 24 =
I t-+- 1 x2  t+ 14 1

As a check note that, as t - ., x - 4 and x2 - 0, as required.

Conditions (3. 4) and (3. 5) are now used to determine the first transition

point. Condition (3.4) is not satisfied for t > 0. Condition (3. 5) o (4t+8) aj , +

241J2 - bj(t+ 14) * 0. To find the values of t satisfying this for J # 1 one solves

for t, and obtains

t14b) - 8a 1 - 24 aJ2(53t • •(5. 3)
bhi+ 4j I

Because of condition (iv) of Prop. 1 it is desirable to consider the largest value of

(5.3) as the first candidatefor a transition; this is t = 10 for j - 2.

As the conditions of Prop. I are satisfied for t = 10 and J a (1, 2) they are

designated t 2 and 12 respectively (note that Io = I in this case). Carrying outthe

minimization of Q(x, t) on the new hyperplane hl 2 results in

x11 2, x2 - 1, A It -
4 X2 - -t + 10,

where, of course, x I and x2 are independent of t since hi2 is a point. Condition

(3. 5) is inoperative since x I and x 2 do not depend on t. From (3. 4)

0 when t a 10. Of these two values only t - 4 is a candidate for the next transition

point since, by the remarks following Prop. 2, t 2 is not a double transition point,

On the other hand, the result t 1 10 serves as a check on the computations since
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t a 10 is precisely the value of t for which the condition a2 should become

redundant.

Checking the conditions of Prop. 2 for t • 4 it is seen that all the conditions are

satisfied except possibly (iv), which cannot be checked at this point in the computations.

Therefore, assume that (iv) holds and continue, reserving the check for later. Tenta-

tively, t3  4, 13 -(2). On hi 3 ,

x 3t+6 t+51  t + ' x2  t + 5 X2  3 1

and one can now check that (iv) of Prop. 2 is satisfied, for

(3t+6)aSl+ 9a1 2 - (t+5) bI > 0, (5.4)

for t a 4-. If (iv) is not satisfied then a degeneracy of Type 3 has occurred at t * 4

requiring one to backtrack to deal with this degeneracy.

The procedure of using (3. 4) and (3. 5) to find a candidate for the next transi-

tion point is repeated. (3. 4) fails to be satisfied for t > 0, while, from (3. 5),

b.- 6a 1 - 9a 2-b + 3ajl

which has maximum value 1 for j 2 3. By Prop. I it follows that t 4 = 1 and 14

(2, 3).

On hi4

3 3 9+9t 3- 3t
X 1  X 2 ' X 2 4 ' A 3 4

As neither (3. 4) nor (3. 5) is satisfied for t > 0 it follows that there are no more

transition points as t -. 0; hence, at t x 0, x1 = x 2  3/2 1. the terminal solution

and {2, 3) is the terminal restriction set. This completes the first subproblem of

the second stage.

For the second subproblem take

Q(x, t) - 3x1
2 + 2x2 2 + 2txlX2 , (5.5)

and the initial restriction set (2, 3). This time t goes from 0 to 1. We obtain
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.3 a9+ 3t

1 2 2 4

and, as neither (3. 4) nor (3. 5) is satisfied for 0 < t < 1, one concludes that no
transitions take place as t - 1. The final result is, therefore, x I a x2 a 3/2.

This simple example exhibits all the steps of the algorithm when no degeneracies

occur. Note that it is not necessary to vary t continuously, even though we spoke
of doing this in the theory; instead, the transition points are found as the roots of
equations linear in t. In general, for larger problems, second degree polynomials
in t arise after the second stage, but the roots are still easily found by the well

known formula.

The following section describes the method of treating the degeneracy occasioned
by the lack of a solution to the first stage.

6. DEGENERACY OF TYPE 1: No solution to the first stage

Assume that the first stage has no solution; that is, there is no x1 satisfying

1  b , j a 1 .. p. To start the algorithm modify the original problem by
adding the term x_ to the quadratic and xo to the left -side of each of the inequalities,

0 2giving a new quadratic, x. + x 'Rx, and a new region defined by

x0 + _! j , x>b j  j l ,. p. (6.1)

The first stage of this new problem has the quadratic xo2 and the additional conditions
x a x2 a 0. This stage has a solution for there certainly exists an x satisfying

1 2 0
(6. 1), viz.. maxj b , which also minimizes xo2 among all xo satisfying the re-
straints.

Therefore, except for the introduction of the new variable xo , the algorithm is
the same as in Example 1. At the end, though, xO will, in general, have a non-zero
value, and to obtain the solution to the original problem x must be driven to zero.
This is done by replacing xo 2 in the quadratic by (t+l)xo 2 and letting t go from 0 to
-. This procedure is exactly the reverse of the procedure used in the first sub-
problem of any stage, where a variable which up to then had been fixed at 0 was
allowed to become non-zero. The procedure is exhibited in the following example.

Example 2: Let

Q(x) u 2x 1
2 + 3x 2

2

(6. 2)1 j'_1 Zbj, j - ... 5
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where

i i j2 bj

1 1 2 4
2 3 1 6
3 1 -1 -2
4 -1 -2 -10
5 -1 4 -4

The polygon defined by the inequalities lies entirely in the positive quadrant, so
that no solution of the form (xI , 0) or (0, x2) exists. The modified problem is

Q(x) - X0
2 + 2x 2 + 3x 2

2 , (6.3)

x0 + aJlx I + aj 2x2 > bj, j =I .... 5, (6.4)

wherex' (x, x 1, x2 ).

For the first stage, upon settig x I • x2 . 0, the solution xo = max, b, b 2 = 6,

and the terminal restriction set (2) are obtained.

The procedure is continued just as in Example I obtaining, at the end of the third

stage, the solution xo x x, - 4/3, x2 = 2/3, and the terminal restriction set (1, 2).

Therefore, to drive xo to zero, take

Q(x, t) (t+l) X0
2 + 2x 1 2 + 3x22 (6.5)

and I0 (1,2}, and obtain

52 12 + 40t 2 -4+ 30t
x0  + Ils 14+23ft '2 1+

38t - 12 12 + 14t
1 lT1 +25 A2  14 +25t

Condition (6.4) is not satisfied by XI or X2 for t > 0, while from (3. 5)

t 14b jl + 4aJ2 - 52
-Zb + 40aj , + 30.1~~l:4a25
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which is negative for J a 3, 4, 5. Thus, the necessary condition for a transition is
not satisfied for t > 0. Letting t -. gives, in the limit, xO - 0, x, -8/5, x2 a

6/5, where the latter two are the solution to the original problem (S. 2).

7. DEGENERACY 2: A nolt of full rank

The matrix A is a variable matrix depeading on I(t); . e., A has rows a
J I(t). A Type 2 degeneracy occurs when, for some particular restriction set I,

does not have full row rank, so that (t,h i ) (t)A') 'b and x(t,h i) -

R'1 (t) A'% fail to exist. This degeneracy will announce itself by the 'blowing up' of
the computation of 0_.t, h 1 ) and x(t, hli ); i. e., at some point in the computation one

will be attemptibg to divide by zero.
Assume that I is the first index for which this degeneracy occurs and that i >

2; the case I a 1 is treated slightly differently. Assume that t is decreasing and

let 6 > 0 satisfy ti 1 > ti + C if ti. 1 > t i or ti. 2 > ti + e if ti. 1 . ti; according to the

definition of a transition point, these are the only alternatives. Both cases are

treated alike, but for definiteness assume ti. 1 > t i . t is fixed at the value t, + e, so
that I(t i + 4) - 1i.1; and now. since i is the first index for which Type 2 degeneracy
occurs, it follows that A has full row rank. Next introduce the new variable xo and

pew parameter s as in the first degeneracy, except that in adding xo to the restric-
tions, its accompanying coefficients must be such that A has full row rank. For

this purpose it is desirable to have available rules for generating linearly-independent
columns, as, for example, the columns of the identity matrix.

In case i - 1 and P u , i.e., the first subproblem of a stage, one cannot fix t at't + C;

it is necessary, instead, to go back to the previous subproblem and introduce xo and
a before t reaches zero. This is the only way the case I = 1 may differ from the casei>l.

If t is increasing, fix t at ti - c, c > 0, but otherwise the procedure is the
same.

Example 3: To the inequalities of Example 1 add a seventh, 5x 1 + 7x2 _ 17.
In the first subproblem of the second stage, when t a t 2  10, 5x1 + 7x2 - 17, since

* 2, x2 = 1 at t 2. In this case 2 {1, 2, 7), and, having 3 elements, degeneracy

results. Fixing t at 11 and introduce xo and s, the new problem is

Q(Xo, XS) (l+s)xo2 + 3x1 2 + (2+t)x 2
2, t = 11

xo+!Ix2 b , j - I_ .....
20 +j'x bj = .

with the restriction set (1). The solution is

iI
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x° T-23 Xi 9i 'i. '- U1 " 64+ 258 (7.1)

The largest a satisfying either (3. 4) or (3. 5) in 168. Therefore, fixing a at
179, t is allowed to resume the role of parameter. The restriction set I is now

(1), and the successive results are t 2 - 10. 934, 12 ={, 7); t3 a 6. 52, 13 * (7); t4
6. 208, 14 - (2, 7); t5 ' 3. 124, 15 - (2); t 8 - . 051, IS • (2. 3); and finallyt 7 = 0, 17:
(2, 3). At this point a is driven back to'. (though it could have been done'earlier) by
fixing t at 0 and letting a be the parameter with range 179 < a < -, and with I =(2, 3).
There are no transitions as s -a-, and, in the limit, x x2 a 3/2 is obtained, as
in Example 1.

8. DEGMEIRACY 3: Condition IV of Proposition 2 not satisfied

The degeneracy announces itself by the failure of the candidate J to satisfy (iv)
or (v). This degeneracy is resolved in the same way as in the previous degeneracy.

9. COMPUTAT]ON OF x (t, h hl ) and I (t, h i)

In the simple examples given above x(t, hi1 ) and Mt, hli) were obtained as explicit
function of t by the straightforward solution of equations. While this is easy to
do for a few variables, it becomes very time consuming for larger numbers of vari-
ables because of the presence of the parameter t, which precludes the use of ordi-
nary numerical methods. Fortunately, however , relatively simple formula for
x(t, hI) and X(t, hi) can be obtained.

jRk(t), j = 1, 2, given by (4. 1) and (4. 1. 1) can be written:

iRk(t), • 2Rk(O) + tEj, j - 1, 2 (9.1)

where

El L 0 ] E2 2 0

rk-l,k
... 0 i ..." rk, k-I 0

The equations for x . x(t, hi) and X - Xt. hli) are, from (2. 2) and (2. 3)

------------------------------------------.----- I
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[R(t) A i

iT

LA J :)T~i(9.2)
where A, which implicitly depends on II, is always assumed to be of full row rank.

Letting R(t) j Rk(t), it follows, from (9. 1) that

~ Er :jL:]+FRk(O) At]~~
[E 0' [01 (9. 3)

and, hence,

FRt Ai-j r1
!A o :,I(9.4)

LA O-J t _-E 0 Ei:-J j . b

where, to simplify the notation, R j R k (0) and E - E . Since t appears linearly

in, at most, on row and one column of R(t), it follows that the coordinates of x

and X will be rational in t, of degree two at most. Therefore, they can be repre-

sented by:

y yx_.yx, _^ ,(95)

where

:_•2t2 +Xl t +x

=A 2t2 + Al t + A.,
(9. 6)

Y" 2Y2 t 2 + y l t + Y o '

Then (9. 4) becomes
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ILA
By hypothesis, ' 0 is.nonsingular, hence, (9. 7) is equivalent to:

Vx] F z1  z1 FtEj

Li L~1  ~ 2  L~](9.8)
Equations (9. 7) and (9. 8) are used to determine the unknown coefficients in (9. 6).

As a solution to (9. 3) exists for t a 0, it follows that y 0 0 0; hence, we may
set YOa 1 since the coefficiert. in (9. 6) are only specified up to a multiplicative
constant. Since (9. 7) and (9. 8) hold for an infinite met of t values, the coef!-
ficieta of like powers of t on either sid. of these equations must be identical.
Therefore, from (9. 8),

0-Z EX2

X I -y Z 1 b- Z 1 1 EX o

Xo' Z 12 t

(9. 9)

0 Z 2 1 EX 2

A2 y 2 Z 2 2 - Z2 1 EX,

_A2 ' Y 22- Z2 1 E-X-

and, from 1(9. 7),

AX 2 , 2 7'Ml!y (9.10)
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The remaining equalities from (9. 7) are not needed. Solving (9. 9) in terms ofy,

and Y2 yields

x i- y1 Z 12b - Z1 1EZ1 2b

X 2 'y 2 Z1 2b - y 1 ZllEZ1 2 b + ZiEZ11 EZ 2 b

Ao = -22b-O

Al -Y1 Z2
b + Z2 1EZI 2t (9.11)

A2  -y 2 Z2 .b + YIZ 2 1EZ 1 2
b - Z2 1EZ 1 IEZI 2b

_0 E(Y2 Z 1 2 b oY1 Z 1 +EZ Z 11 1Z2DEZI9b).

The last equation is of rank 0, 1, or 2. If 0, setY 2 yl 0: if 1 set Y2 .0 and

solve for yl (setting y1 x 0 if its coefficient is 0); if 2 solve for y1 and Y2. Making

use of (9. 10), a solution of (9. 11) is obtained in each case. Since any solution of
(9. 11) is a solution of (9. 8) for all t, and (9. 8) and (9. 2) are equivalent systems,

It follows that a solution for (9. 2) is obtained. This solution must be unique, since

the matrix on the left side of (9. 2) Is nonsingular.

Each time there is a transition or a degeneracy

[1 : = [RkjO ] (9.12)
LZ21 Z2J A 0

changes, andthese changes are of the following types.

(1) Add or subtract one or more rows from A, corresponding to transitions
in which Props. 1 or 2 are satisfied.

(2) Border Rk(O) with a row and column and add a column to A in the same
position a~the column added to Rkj(O). This occurs when we add a new
variable either to start a new stage or to resolve a degeneracy.

(3) The reverse of (2) occurs when we delete a variable previously added
to resolve a degeneracy.

(4) Replace the zeros in the kj'th and Jktth positions of Rkj(0) by rki and
rjk(=rkl), respectively. This occurs when we pass from one subproblem
to the fext, after the first in the k'th stage.
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All these changes can be accomplished by modifying (9. 12) by well-known methods

rather than by reinverting each time.

10. EXTENSION TO LINEAR PROGRAMMING

The extension in obtained by embedding the linear objective function in a second-

degree polynomial with a positive definite quadratic component, solving the result-

ing problem by the algorithm just given and then driving the quadratic part to zero

in the final stage. The algorithm is unchanged but some changes are required in

the solution for x and X.

If the original linear programming problem is: minimize u'x subject to a i Ix >

b i , i a1 .... p, where u, t i , and bi are all given, replace this problem with the

derived problem: minimize xlx + u'x subject to the same conditions. Condition

(2. 2) is replaced by R(t)x - A'X = u; (9. 4), (9. 7) and (9. 8) are replaced by -tEx by

u - tEx; and in (9. 9) =2b and - Ao = Z 2 2 b are replaced by, respectively,

So 2 ZllU__+ Z12b and -o = Z 2 1u + Z2 2 b. The required changes in (9. 11) are then

easily made.

After the solution to this problem has been found, drive x'x to zero by replacing

xx + ux by x'x + tu'x and letting t go from I to -. (9. 4) is now replaced by

1-1 A ~ W uti

S 0b 

(10.1)

where E = 0. Then, simply,

[2 = A2 -1 ] [: 11 K] (10.2)

Jx _ Z21 z2

If there are n variables then there are at least n + 1 subproblems, but, at

most, only a few more than n + 1: n for the solution of the derived problem, 1

for the elimination of the quadratic component, and possibly a few more due to

degeneracies.
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